Главная / Прайс-лист / Светотехника

Светотехника

Взрывозащищенные светодиодные светильники

image001

   Несмотря на то, что переход к светодиодному освещению является относительно новым направлением в России, оно стремительно развивается и набирает популярность. Сегодня на рынке представлены разные светодиодные светильники, в том числе выполненные во взрывозащищенном варианте. За счет своих уникальных эксплуатационных характеристик они предназначены для освещения объектов нефтяной, газовой, химической, металлургической, деревообрабатывающей, текстильной промышленности.

Существующие на рынке модели взрывозащищенных LED-светильников обладают разными характеристиками, которые стоит учитывать при выборе.

Маркировка взрывозащиты

Все светодиодные системы освещения, которые относятся к классу взрывозащищенных, должны быть маркированы знаком соответствия стандарту взрывозащиты – Ex.

Одними из важнейших характеристик взрывозащищенных светильников являются группа и уровень взрывозащиты. Согласно системе ГОСТ Р, различают две группы взрывозащищенного электрооборудования, включая светодиодные светильники:

  • Группа I – рудничное взрывозащищенное электрооборудование, предназначенное для применения в подземных выработках шахт, рудников и в их наземных строениях, опасных по рудничному газу и/или горючей пыли.
  • Группа II – взрывозащищенное электрооборудование для внутренней и наружной установки, предназначенное для потенциально взрывоопасных сред, кроме подземных выработок шахт и рудников и их наземных строений, опасных по рудничному газу и/или пыли.

Таким образом, выбор взрывозащищенных светильников зависит от предполагаемой области применения.

Основным спросом на рынке пользуется взрывозащищенное оборудование второй группы. Выделяют три подгруппы (А, В и С), различающиеся категориями взрывоопасных сред, в которых могут применяться светильники. Наиболее распространенная – категория В. Такие светильники могут эксплуатироваться в атмосфере, где присутствуют соединения, содержащие азот, кислород, смеси (коксовый газ), серу и галогены.

Светодиодные взрывозащищенные светильники обеих групп классифицируются по трем уровням взрывозащиты, которые отражены в маркировке осветительных приборов.

Группа

Уровень взрывозащиты

Характеристика

I

РП – рудничное электрооборудование повышенной надежности против взрыва

Оборудование, в котором взрывозащита обеспечивается только в признанном нормальном режиме его работы.

РВ – рудничное взрывобезопасное оборудование

Оборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств защиты.

РО – рудничное особовзрывобезопасное оборудование

Оборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты.

II

2 – электрооборудование повышенной надежности против взрыва

Оборудование, в котором взрывозащита обеспечивается только в признанном нормальном режиме его работы.

1 – взрывобезопасное электрооборудование

Оборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты.

0 – особовзрывобезопасное оборудование

Оборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты.

Наиболее востребованными и распространенными являются взрывозащищенные светильники с уровнем защиты 1. Они могут быть использованы во всех случаях, когда требуется применение электрооборудования с уровнем 2, но при этом дают дополнительную гарантию взрывозащиты.

Типы взрывозащиты

При выборе взрывозащищенных светильников важно учитывать и то, как реализована взрывозащита в оборудовании. Выделяют несколько типов взрывозащиты:

  • d – взрывонепроницаемая оболочка. Распространение взрывов во внешнюю среду исключено.
  • m – герметизация компаундом. Атмосфера изолирована от источника возгорания. В зависимости от типа компаунда маркировка может быть ma, mb, mc.
  • е – повышенная защита. Компоненты, применяемые в оборудовании, не вызывают искрения и опасных температур при нормальной работе.

Для обеспечения надежной взрывозащиты зачастую в светильниках используется несколько ее типов одновременно. Это также отражается при маркировке изделий. Например, mb d: взрывозащиту обеспечивает заливка компаундом, а также размещение во взрывонепроницаемой оболочке.

Степень защиты IP

IP, степень защиты от воздействия факторов окружающей среды (от проникновения влаги и пыли), — это одна из важнейших характеристик взрывозащищенного светильника. Если уровень защиты ниже IP65, то электрооборудование в процессе эксплуатации потребует дополнительных затрат на очищение от пыли и влаги.

В обозначении уровня первая цифра показывает степень защищенности от пыли. Например, в обозначении IP67 первая цифра «6» – это полная защита. Вторая цифра обозначает степень защищенности от влаги: «7» – это не только защита от сильного дождя, но и защита электроприбора при кратковременном погружении в воду на глубину до 1 м.

Температурный класс

При выборе взрывозащищенных осветительных приборов следует обратить внимание на температурный класс, который обозначает максимальную температуру нагрева оболочки осветительного прибора. Она не должна превышать температуру самовоспламенения взрывоопасных смесей, в которых будет работать светильник.

Температурный класс

Максимальная температура поверхности, С

Т1

выше 450

Т2

от 300 до 450

Т3

от 200 до 300

Т4

от 135 до 200

Т5

от 100 до 135

Т6

от 85 до 100

Чем выше класс, тем меньше возможная наибольшая температура нагрева поверхности осветительного прибора и, соответственно, ниже вероятность взрыва и шире область эксплуатации осветительных приборов.

Взрывозащищенные светильники компании «АтомСвет»

Компания АtomSvet® разработала линейку взрывозащищенных светодиодных светильников X-proof. Они предназначены для работы на предприятиях, объектах и в зонах со взрывоопасными средами и особыми условиями эксплуатации, отличающимися повышенной концентрацией влаги и пыли. Светильники «АтомСвет» могут эксплуатироваться в широком диапазоне температур: от -600С до +600С. Их основные характеристики:

  • Маркировка взрывозащиты: 1Ex mb d IIB T5 Gb/Ex tb IIIC Db; 1Ex mb d IIB T4 Gb/Ex tb IIIC Db; 1Ex mb e IIB T5 (Gb/Ex tb IIIC Db; 1Ex mb e IIB T4 Gb/Ex tb IIIC Db.Светильники полностью герметичны, имеют степень защиты от проникновения пыли и влаги IP67.
  • Блок питания обеспечивает отсутствие пускового тока и снабжен системами подавления высокочастотных помех и компенсации реактивной мощности.
  • Благодаря применению электронных компонентов класса Industrial, наличию встроенных защит от перенапряжения и перегрева, светильники надежны и долговечны и не требуют специальной утилизации и обслуживания.
  • Конструкция светильников «АтомСвет» обеспечивает повышенную вибро- и ударостойкость – группа условий эксплуатации М2 по ГОСТу 17516.1.

Что такое наружное освещение?

image003

Важную роль в обеспечении безопасности населения играет наружное освещение. Исправная работа осветительных приборов на улицах и дорогах снижает риск травматизма среди пешеходов, уменьшает количество дорожно-транспортных происшествий. Кроме того, наружные светильники являются визитной карточкой населенных пунктов: ярко освещенные аллеи, скверы и парковые зоны, декоративная подсветка фасадов зданий, рекламных баннеров и щитов – все это украшает мегаполисы и небольшие города в темное время суток. 

Наружные светильники для городских улиц и дорог

Выбор того или иного вида светильников зависит от назначения освещаемого объекта. Чаще всего в общественных местах используются уличные фонари консольного или венчающего типа.

Консольные светильники монтируются на столбах и вертикальных опорах при помощи специальных крепежных элементов – Г-образных кронштейнов. Световой поток направляется сверху вниз, поэтому 
светильники устанавливаются на большой высоте. Такие приборы – оптимальный вариант для освещения тротуаров, площадей, городских автомобильных дорог, железнодорожных переездов. Консольные светильники для магистралей и скоростных шоссе оснащаются мощными лампами с высоким индексом цветопередачи. Такие источники света обеспечивают яркое и контрастное освещение объектов и повышают безопасность дорожного движения.

Венчающие светильники направляют световой поток снизу вверх и используются в качестве декоративной подсветки парковых зон, аллей, памятников, фонтанов. Установку светильников необходимо выполнять на такой высоте, чтобы исключить ослепление прохожих.

Декоративная подсветка зданий в ночное время

Архитектурная подсветка зданий используется в эстетических и рекламных целях. Яркие вывески и рекламные щиты на торговых центрах, офисах, ресторанах и ночных клубах привлекают к себе внимание потенциальных клиентов. С функцией освещения фасадов лучше всего справляются прожекторы – они испускают мощный световой поток, который можно направить под любым нужным углом. Встраиваемые и акцентные светильники применяются для освещения витрин, представляя товары в наиболее выгодном свете.

Освещение частных домов, скверов, ландшафтных групп

Уличные светильники используются не только в общественных местах, но и в частном секторе. С помощью консольных приборов можно организовать эффективное освещение подъездных путей и придомовой территории. Подвесной наружный светильник обеспечит ярким светом вход в калитку или въезд в гараж. Встраиваемые приборы можно использовать для освещения крыльца и для организации декоративной подсветки всего периметра дома.

Светильники торшерного типа применяются как элементы ландшафтного дизайна в частных садах, общественных скверах и парковых зонах. Это идеальный вариант для светового оформления прогулочных дорожек, садовых беседок, бассейнов, фонтанов, цветочных клумб.

Энергосбережение в наружном освещении

В нашей стране большую часть года темное время суток преобладает над световым днем, поэтому затраты на наружное освещение исчисляются миллиардами рублей. Для снижения потребления энергоресурсов принимаются различные меры, в число которых входит повсеместное внедрение систем светодиодного наружного освещения. Возрастающая популярность LED-светильников обусловлена тем, что они экономичнее люминесцентных и газоразрядных ламп, не требуют ремонта и замены осветительных элементов в течение нескольких лет.

Особенности наружных светодиодных светильников

Главным преимуществом наружного LED-освещения принято считать высокую экономичность. Действительно, энергопотребление таких светильников в 2–3 раза ниже, чем у традиционных источников света. Светодиодные светильники для наружного освещения обладают и множеством других достоинств. Это:
Низкая потребляемая мощность. LED-лампы снижают нагрузку на электрические сети, а для подключения оборудования требуются кабели малого сечения.
Долговечность. При правильной эксплуатации гарантированный срок службы светодиодов составляет 50 000 ч, номинальный – около 100 000 ч. В этот период приборы не требуют замены электронных и осветительных компонентов.
Широкий диапазон рабочих температур (крайние показатели могут достигать +/-60°C). Это позволяет эксплуатировать наружные LED-светильники в разных климатических зонах, вплоть до Крайнего Севера.

Надежная защита от влаги и пыли. Приборы со степенью защиты IP65 и выше имеют полностью герметичный корпус.

Отсутствие стробоскопического эффекта. Светодиодный наружный светильник включается мгновенно и не мерцает во время работы. Равномерное уличное освещение значительно повышает безопасность водителей и пешеходов.

Виброустойчивость. В светодиодах отсутствуют нити накаливания, поэтому источник света не повреждается под воздействием ветра или ударов.

Оптимальная цветовая температура. Холодный белый свет обеспечивает контрастное освещение и улучшает видимость объектов в темное время суток.

Общедомовое освещение. Освещение жилых домов.

1. Обзор систем общедомового освещения

Как показывают многочисленные наблюдения, система коллективного освещения в многоэтажных жилых домах представлена лампами накаливания средней мощностью 60 Вт. Лампы, как правило, установлены без плафонов, что является нарушением требований пожарной безопасности. Пожарную опасность ламп накаливания принято рассматривать в двух аспектах:

• возможность возникновения пожара от соприкосновения лампы и горючего материала;
• возможность возникновения пожара от попадания на окружающие горючие материалы раскаленных элементов лампы, образующихся при ее разрушении. 

Первый аспект связан вопервых с тем, что температура стеклянной колбы лампы накаливания после 60 минут горения составляет от 110 до 360°С (при мощности ламп от 40 до 100 Вт). Именно этим объясняется наличие темных закопченных кругов на потолке над установленной лампой.

Во-вторых, он связан с неправильной эксплуатацией, когда на одно нарушение (использование открытой лампы без рассеивателя (термостойкого плафона), который снимают многие жильцы чтобы «лампа светила ярче») накладывается другое нарушение - несоблюдение допустимого расстояния приближения горючих материалов. Это явление, весьма часто, встречается в тесных приквартирных тамбурах, которые жильцы используют как импровизированные кладовки. 

Даже наличие достаточного расстояния не гарантирует безопасность - пожар может возникнуть (второй аспект) от раскаленных частиц металлов, образующихся при аварийных режимах (перегорание лампы) в дефектных лампах (оплавления электродов или вводов дуговыми разрядами) и разлетающихся от лампы на расстояние около трех метров. Вертикально падающие частицы сохраняют зажигательную способность даже при падении с 8-10 м.

Широко встречается нарушение, когда алюминиевые провода удлиняют при помощи медных проводов с использованием скруток. В результате образуется гальваническая пара, приводящая к электрохимической коррозии (разрушение контакта) и росту сопротивления контакта, что в конечном итоге также может стать источником пожара из-за нагрева места соединения проводов.
Среди основных вариантов электроснабжения можно выделить следующие основные:

• вся система включена без диодов;
• вся система включена с использованием диодов (централизованно, в электрощитовой);
• комбинированные решения (диоды установлены частично в лампах и выключателях).

Диод - электронный компонент, обладающий различной проводимостью в зависимости от направления тока. В домах используется для снижения действующего напряжения на лампах накаливания с целью снижения энергопотребления и повышения срока службы ламп накаливания.

Установленные диоды в цепи электроснабжения системы освещения дома приводят к тому, что лампы накаливания начинают заметно мерцать, что доставляет дополнительный дискомфорт жильцам. 
Действующее напряжение снижается с 220 до 156 В, но следует учесть, что в связи с тем, что лампа накаливания является нелинейным элементом и её реальное энергопотребление снижается только на 42% а световой поток, зависящий от квадрата нормального напряжения - уменьшается до 27%.

Световой поток - физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения. Является основной характеристикой источника света для оценки создаваемой данным источником света освещенности.

В результате лампы становятся менее энергоэффективными: если исходный вариант имеет световой поток 800
лм при мощности 60 Вт (светоотдача 13,3 лм/Вт), то при
использовании диода световой поток составляет 216 лм
при мощности 34,8 Вт (светоотдача 6,2 лм/Вт).

Энергоэффективность - эффективное (рациональное) использование энергетических ресурсов. В случае освещения это использование меньшего количества электроэнергии для обеспечения того же уровня освещенности.
Световая отдача источника света - отношение излучаемого источником светового потока к потребляемой им мощности. Является показателем эффективности и экономичности источников света.


Для компенсации сниженного светового потока жильцы устанавливают лампы большей мощности, доходящей до 200 Вт, что приводит к росту электроэнергии на нужды общедомового освещения.

В конечном итоге освещенность подъездов и тамбуров не соответствует нормам СанПиН 2.1.2.2645-10 (средняя освещенность на лестничных площадках, поэтажных коридорах и т.п. должна составлять не менее 20 люкс).

2. Обзор энегоэффективных источников света

image005

Рисунок 1 - Устройство КЛЭ, где 1 - утолщение трубки; 2 - внутреннее покрытие колбы; 3 - ЭПРА; 4 - вентиляционное отверстие; 5 - цоколь

 

На рынке в широкой продаже имеются следующие энергоэффективные источники света (ЭИС), применимые для использования в жилых домах: люминесцентные лампы (в том числе КЛЭ (компактная люминесцентная со встроенной ЭПРА (электронная пускорегулирующая аппаратура))), светодиодные лампы и светильники.

Существенным недостатком люминесцентных ламп является наличие в их составе паров ртути, что требует особых мер по утилизации и наличие задержки включения (лампа достигает номинального светового потока работы через заметный промежуток времени). Заявленный срок службы в 25 000 часов, как правило, не выполняется по причине частого перегорания вольфрамовых электродов. В процессе работы лампа разогревается до 60 °С, и если они используются в составе каких-либо закрытых светильников, то тепловыделение приводит к перегреву электроники и преждевременному выходу лампы из строя. Гарантийный срок эксплуатации у данных ламп отсутствует. При использовании в холодных помещениях у них снижается световая отдача и срок службы. Также нельзя отбрасывать человеческий фактор - лампы могут украсть жильцы с целью применения их для освещения квартиры.

Единственным и существенным недостатком ламп со светодиодным источником света является их высокая рыночная цена. Но данная цена окупается их значительно меньшим энергопотреблением, даже в сравнении с КЛЭ. Но при использовании данной лампы в стандартном светильнике возможно ухудшение светораспределения на освещаемой поверхности, т.к. данная лампа дает узконаправленный луч света. Таким образом, данные лампы эффективно использовать только при их вертикальной установке по направлению к полу (например - в люстре).

image006

Рисунок 2 - Устройство светодиодной лампы, где 1 - светорассеиватель; 2 - светодиоды; 3 - монтажная плата; 4 - радиатор; 5 - драйвер; 6 - вентиляционные отверстия; 7 - цоколь

image007

Рисунок 3 - Светодиодный светильник SLG-HL8

Выбирая между светодиодной лампой и светодиодным светильником желательно сделать выбор в сторону светодиодного светильника, так как у светодиодной лампы присутствует аналогичный человеческий фактор и возможность перегрева электроники (как и у КЛЭ).
На данный момент на рынке представлены два типа светодиодных светильников, приемлемых для применения в сфере ЖКХ - основанные на бездрайверной схеме и с применением драйвера. Ценовой диапазон светильников находится в пределах 500-700 руб. без использования драйвера и 700-1600 руб. для светильников с драйвером.

Основное назначение драйвера - преобразование переменного тока и высокого напряжения первичной цепи в постоянный стабилизированный ток и низкое напряжение приемлемый для питания светодиодов. Помимо этой основной функции, драйвер обеспечивает защиту от короткого замыкания, защиту от перегрева драйвера и светильника в целом, а также устойчивую работу светильника в широком диапазоне входящего напряжения. Пониженное напряжение вторичной цепи обеспечивает безопасность при проведении электромонтажных работ и обслуживании светильника.

Сущность бездрайверной схемы заключается в том, что в светильнике используется большое количество (2070) светодиодов малой мощности (0,1—0,3 Вт), соединенных последовательно для питания их высоким напряжением (>70 В). Но надежность любой технической системы обратно пропорциональна числу используемых элементов, и перегорание любого из светодиодов (при использовании дешевых светодиодов сомнительного качества) приводит к выходу светильника из строя. Системы защиты отсутствуют. 

В результате отсутствия драйвера (импульсного источника питания) происходит некорректное питание светодиодов, что приводит к их быстрому старению (снижается срок эксплуатации с 50 000 до 30 000 ч.). Также к основным недостаткам данных светильников относится большой коэффициент пульсаций, с которым можно условно мириться из-за кратковременного пребывания жильцов в подъезде. 

3. Средства автоматизации

Для управления системой освещения в многоквартирном доме кроме стандартных выключателей можно использовать в качестве средства автоматизации различные датчики движения.

Датчик движения (ДД) - это датчик, который отслеживает перемещение каких-либо объектов. Как правило, под датчиком движения понимают электронный инфракрасный (ИК) датчик, который обнаруживает присутствие и перемещение человека и коммутирует нагрузку - сигнализацию в случае его использования в качестве охранной системы, или системы освещения при использовании его в качестве средства снижения энергопотребления (за счет снижения времени работы) этих систем. После выдержки определенного промежутка времени (как правило - регулируемого) ДД отключают нагрузку (в данном случае - светильник).

Весьма полезной встроенной в большинство ДД функцией является наличие у них датчиков освещенности (ДД не будет работать, если освещенность в помещении превышает определенный уровень). За счет этого система освещения не включается в светлое время суток.

image008

Рисунок 4 - Принцип работы инфракрасного датчика движения

К недостаткам ИК ДД является

• ограниченный сектор охвата (обзора);
• снижение чувствительности при установке на высоте более 2 метров;
• невозможность установки возле сильных источников тепла (к примеру - батарей отопления).

Например, при установке датчика движения в длинном коридоре (около 6-8 метров) он срабатывает только когда человек доходит примерно к его середине, что доставляет определенные неудобства (первую треть коридора приходится проходить в темноте). Дальности их обзора (около 6 метров) вполне достаточно для использования в подъезде.

Решением ограниченного сектора охвата может стать установка 2-х ДД, используя следующие схемы монтажа:

• в начале и в конце коридора на стенках, ДД при этом направлены навстречу друг другу;
• равномерное распределение ДД на потолке.

В обоих случаях ДД должны подключаться параллельно, чтобы срабатывание любого из датчиков включало светильник. Недостатком данного решения является повышенный расход самих ДД, который при их высокой рыночной цене (около 250 р.) приведет к значительным финансовым затратам при сомнительной экономии в случае использования энегоэффективных источников света. К примеру, 2 ДД постоянно потребляют более 10% мощности работающего светодиодного светильника. Также не следует забывать, что также происходит значительное усложнение системы коммутации - необходимо проложить провод до каждого из датчиков в обоих направлениях. 

Также существует более дешевые варианты ДД - звуковые (фотоаккустические). Эти датчики часто встречаются уже в составе определенных светильников (см. рисунок 1.5). Наличие в их названии слова «энергосберегающий» и невысокая рыночная стоимость около 250 руб. подкупает многие ТСЖ и УК, но серьезным их недостатком является проблема установки чувствительности на уровень звука. Установка слишком высокой чувствительности приводит, например, к тому, что житель, обутый в кроссовки может пройти мимо такого датчика, и он не сработает. Установка низкой чувствительности приводит к отсутствию избирательность по сигналу - ДД срабатывают практически от любого звука.

image009

Рисунок 5 - Энергосберегающий светильник ЖКХ-03

Общим недостатком любых датчиков движения является то, что светильник в процессе эксплуатации испытывает значительно большее число циклов включения- выключения, что снижает его срок службы установленного источника света. К примеру, лампы накаливания перегорают в 90% случаев в момент включения при сопутствующем броске тока. В случае КЛЭ интервал между включениями, устанавливаемый гарантийными условиями для достижения положенной наработки, может быть больше двух минут (это связано с работой простых схем предпускового разогрева). Применение в их составе устройств плавного пуска не позволяет использовать КЛЭ и светодиодные лампы. 

Стоимость сэкономленной электроэнергии оправдывает преждевременный выход из строя источников света только в случае применения ламп накаливания, обладающих сравнительно низкой рыночной стоимостью. Также датчики движения доставляют определенный дискомфорт жильцам, особенно при неправильной установке.

Единственной областью, где применение ДД в жилом доме экономически целесообразно, являются места редкого использования, например аварийная пожарная лестница.

Как показали наблюдения, пожарной лестницей пользуется не более 1 человека в неделю. С учетом этажности домов, где эта лестница присутствует, можно определить экономию электроэнергии в случае использования ламп накаливания и ЭИС.

В случае использовании ламп накаливания экономия электроэнергии по потребленной мощности составляет 60-0,5=59,5 Вт, где 60 - мощность лампы накаливания ЛОН-60, Вт.; 0,5 - потребляемая мощность ДД в режиме ожидания, Вт. В месяц, при работе в круглосуточном режиме, экономия составит: 0,0595 24 29,4-42 кВт ч (здесь 0,0595 - высвобождаемая мощность, кВт; 24 - количество часов в сутках; 29,4 - среднее количество дней в месяце). При цене за электроэнергию 2,367 руб./кВтч установленные ДД ценой 250 р. и стоимостью монтажа около 150 руб. каждый, проект по оборудованию ДД окупятся в течение (250+150)/(42х2,367)-4 месяцев.

В случае использования ЭИС (см. п. 1.2) средней мощностью около 8-15 Вт высвобождаемая мощность равна (15...8)-0,5=14,5...7,5 Вт (здесь 15 - мощность КЛЭ, аналога лампы накаливания 60 Вт; 8 - мощность светодиодного светильника SLG-HL8, также аналог ЛОН-60). При этом среднемесячная экономия электроэнергии составит (0,0145.,.0,0075)-24-29,4=10,2...5,6 кВт ч. Срок окупаемости - (250+150)/((10,2...5,6)х2,367)~17...30 месяцев, или полтора-три года.

Такие образом, экономически нецелесообразно устанавливать датчики движения в комплекте с ЭИС - достаточно лампы накаливания. Единственный недостаток данного решения - запрет производства и реализации в России ламп накаливания в 2014 году.

Схема установки ДД в аварийных лестницах рекомендуется нестандартная (настенная), так как она обеспечивает охват сразу двух лестничных пролетов (см рисунок 1.6). Как показывает практика, ДД при данной схеме срабатывает только при подходе человека на середине лестничной площадки (перед самой лестницей), что при малой интенсивности использования пожарной лестницы можно отнести к несущественному недостатку.